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IMAGE MODELING AND ENHANCEMENT VIA STRUCTURED SPARSE MODEL

SELECTION

Guoshen YU Guillermo Sapird, and Sephane Mallat
TECE, University of Minnesota ¥*CMAP, Ecole Polytechnique

ABSTRACT

An image representation framework based on structuredspaodel
selection is introduced in this work. The corresponding elingj
dictionary is comprised of a family of learned orthogonaldes For
an image patch, a modelis first selected from this dictiottangugh
linear approximation in a best basis, and the signal estmég then
calculated with the selected model. The model selectiotsl¢éa a
guaranteed near optimal denoising estimator. The degréeof
dom in the model selection is equal to the number of the bages,
ically about 10 for natural images, and is significantly lowlan
with traditional overcomplete dictionary approacheshsitang the
representation. For an image patch of sjad x /N, the computa-
tional complexity of the proposed frameworkdgN?), typically 2
to 3 orders of magnitude faster than estimation in an oveptem®
dictionary. The orthogonal bases are adapted to the imagteoést
and are computed with a simple and fast procedure. Statieeedt
results are shown in image denoising, deblurring, and intjrey.

Index Terms— Model selection, structured sparsity, best basis

denoising, deblurring, inpainting
1. INTRODUCTION

Image enhancement problems, such as denoising, deblamidg
inpainting, are typical and important tasks in image preces Es-
timation in sparse representations provides a powerfliftassuch
image enhancement tasks. State-of-the-art image enhantee
sults have been recently obtained with learned overcomgietio-
naries and sparse coding over them [1, 6, 14]. In these apipesa
overcomplete local dictionaries are learned from the irsaged the
image enhancement is performed through estimation (spade
ing) in the resulting overcomplete sparse image represensa

Sparse signal estimation in an overcomplete dictionaryls s
ject to an exponentially large degree of freedom. Calaudpsiuch
estimation is not only computationally demanding, the t@syes-
timate is also likely to be unstable| [2, 8], which may deteaie the
image enhancement results[[15].

In this paper, we introduce a novel image representationdra
work, namely structured sparse model selection (SSMS).dlde
tionary is comprised of a family of learned orthogonal bases a
given image patch, a model is selected through linear ajypadion
in a best basis, over which the signal estimation is theruéatied.
The model selection leads to a guaranteed near optimal €legoi
estimator. The degree of freedom in the model selectionusleg
the number of the bases, typically about 10 for natural ireagig-
nificantly reduced with respect to the traditional overcéetgdic-
tionary approaches, and thereby stabilizing the reprasent For
an image patch of siz¢/N x /N, signal estimation with SSMS is
calculated with a complexity’(KMN), whereK andM are respec-
tively the number of the bases and the linear approximatiowed-
sion, whose typical values lead to a complexitydiiN?), 2 to 3
orders of magnitude faster than estimation in an overcomplie-
tionary. The orthogonal bases are adapted to the imageearkstt
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and are computed with a simple and fast procedure. Statfeceért
results are shown in image denoising, deblurring and irjpagn
2. STATE-OF-THE-ART ON IMAGE ENHANCEMENT
State-of-the-art image enhancement is obtained by spadiag:
image patches with learned overcomplete dictionaries4g, in-
ages are decomposed into overlapping patéhe®N, wherey/N x
VN is the patch size. A patch is assumed to be sparsely repegsent
in an overcomplete dictionary = { @n}mer, with |['| > N:
f = fao+wp with fo = Z alm|@n,
meA
where the approximation errdgiwa |2 < | f[|> and [A] < |T.
sparse approximatiofi= > mei alm|@m of f is calculated with, for
example, an orthogonal matching pursuit that approximatel§
solution [18] or with arl* minimization [5] that calculates

d—argmin|f - 3 almgn|*+ Allal )
Given an image patch data sl F1<i<i with | > N, the dic-

tionary 2 = {@n}mer is learned by solving the following mini-
mization, so that it provides sparse representations Fen@image
min

patches,
fi ai[man>+Al|a 3
{@mbmer{@i}i-1...1 ,Z” " Zr Jonl*+ Allaille @)

The minimization[(B) is typically non-convex and a localgan is
calculated with an iterative procedure e.g., the K-SVD [1]
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Fig. 1. Sparse signal models. Left: the overcomplete dictionargiehdn
this model any sparse set of atoms (columns in gray) can betsel. Right:
the structured sparse model selection model. In this makieldictionary
is comprised of a family of orthogonal bases, only one setkat a time.
The model selection is calculated with linear approximaiioa best basis,
i.e., only the first few atoms of one basis (in gray) can bectede

3. STRUCTURED SPARSE MODEL SELECTION

The underlying signal model of the overcomplete dictionapy

proach, as depicted in Figl. 1, is that an image pdtehRN can be
accurately approximated with a few atofg, }mea in an overcom-
plete dictionary? = {@n}mer with |[[| > N > |A|. To approximate

f with |A| atoms in the dictionary, the degree of freed<|J|r)F\||> in

selecting the atoms is exponentially large 10 for typical val-

= 256, |A| = 8), which may lead to unstable signal
estimation[[2]. It has been shown that fieminimization achieves
more stable recovery of the suppfmhanl 0 [43]. However, reliable
signal estimation requires further stabilization([8] 1Bktempting

to exploit all the possibilities, the approximatidd (1) isneputed
via an iterativell minimization procedurd2), that has a relatively
high computational complexity7(L|[|N), whereL is the number
of iterations typically in the order of £ao 1C°.

Putting structure in sparsity stabilizes the estimatidn 8 this
section, we introduce a structured sparse model selecB8ME)
signal model that reduces tremendously the degree of freeto
well as the computational complexity in signal estimatiand on
the top of that, provides state-of-the-artimage enhanoénasults.




3.1. Structured sparse model 3.3. Bases design

Asillustrated in FigClL, SSMS is defined with a dictionary quised ~ The orthogonal basgs#*}1 <<k are initialized with Principal Com-
of K sub-dictionaries? = { #*}1<x<k, €ach#* = { @} 1<men be-  ponents Analysis (PCA) over synthetic contour images. 8ase

ing an orthogonal basis. An image patthke RN is assumed to be the model selection, they are then adapted to the image erestt

accurately approximated with a linear approximation in atlme- by applying PCAs again over that image.

thogonal basis indexed by 3.3.1. Directional bases initializlzltion _
M -~ g T e
f =0 +wid with £ = 3 (f,d9) o, ) .r' ..ll":r"....-r’.'ﬂﬁ
=1 Fig. 2. The first 8 atoms i#* with 6, = 30°.

As shown in[[1], the most prominent atoms in a learned over-
complete dictionary look like edge patterns. In order toteepdi-
rectional patterns, the orthogonal bases in SSMS arelingdthby
computing PCAs over synthetic contour images of variousria-
tions, one basis for each orientation. At the orientafigrsynthetic
contours with different amount of blur are created. Imagelpes

_ _ KN {fi}i—1,.., of size /N x /N touching the contours at different lo-
the degree of freedom in atom selection frt{mM > toK |\, ) cationsare collected. The orthogonal bagfsis obtained by calcu-

Second, the linear approximation in each basis furtheraesithe ~ 1ating PCA over these patches. _
degree of freedom to just, stabilizing the encoding and reducing ~ The eigenvalues of the dictionary atoms decrease rapidly an

where the linear approximation err)tpnf,fjlJ |2 < || f||?andM < N is
the linear approximation dimension.

Compared with the overcomplete dictionary mo@el (1), thelSS
model [4) is much more structured and the structure comes fro
two concepts. First, the estimation in the best orthogoasisbex-
cludes the possibility to select atoms across the baseshwhrinks

the computational cost. become negligible after about tRéN-th atom. As shown in Fid.]2,
) the first about/N = 8 atoms oscillate in the direction orthogonal to
3.2. Structured model selection 6 from low- to high-frequency and are quasi-constariinOther
The best basigg* in (@) is computed by maximizing the projection atoms that complete the orthogonal basis look unmeaningiut
energy on{ @} 1<mem Over all the orthogonal bases® € 2: orientationdy is uniformly sampled from Oto 180, typically with
K2 M K\ 12 a step of 10, which results irK = 18 orthogonal bases.
ko= argk:nlw,% IHwll” = argk:nﬂéﬁ nglw’ Gin) " ) In order to better capture more complex texture patternsCa D

The model selectiof[5) has a degree of freedoand is calculated basis is added to the dictionay.

with a complexity?(KMN). With the typical valuedl = 64,M = 8, 3.3.2. Bases adapted to image . :
K = 18 as we will see in Sectidn 3.3, the model selection comgylexi The baS(_as are adapted to the image of |-nterest by applyirighs
is O(N2). over the image patches, grouped following the model seleciihe

structured model selection with the directional basesihiced above
assigns a moddd to each patch. The basig®, with 1 < k < K, is
adapted to the image by recalculating the PCA with all thegena
patches that have been assigned to the miadel

the empirical model selection leads to a near optimal denpiss-  3.4. Best basis estimation

timator whose risk is upper bounded by 4 times the best eitima The signal estimation is calculated with a non-linear thoéding

The following theorem shows that when the true original algn
is contaminated by a Gaussian white noise

y[n] = f[n]+w[n] for 1<n<N, (6)

obtained with an oracle. estimator in the best basig' o 4
F=73 va)ar, (10)
Theorem 1. Let 02 be the noise variance and ¥ A g/log,(KN) m;\

with A > /32+ 8. For any fe RN, the empirical model WhereA = {m: (v, ¥} > T}. In effect, the non-linear estimation
selection Ge typically improves the estimate with respect to the linestinea-

M tor (8), as the former is more robust to the signal model error
ko=arg max [yly2=arg max 3 [v.@d)>  (7)
k=l,.K M k1K oy 4. EXPERIMENTAL RESULTS & CONCLUSIONS
yields a linear projection estimator 4.1. Denoising
.M 4.1.1. Gaussian white noise removal
f= z <y74451° >(451° 5 (8)  We first tested on images corrupted with Gaussian white nafise
of f, which satisfies m=1 varianceo?. The SSMS denoising is conducted with p_atch_es of size
- ) ) K2 oo 3252 8x8,M =8,K =18 andT = 30. Table[1 summarizes its per-
EflIf—f]7] < 4k:T]_QK (||f —fll“+T M) + KN’ (9 formance in comparison with the learned overcomplete atietiy
" v k ' (LOD) [6], the Non-Local Means (NLmeans<)/[4], and the Gaus-
where f§ = 11 (f, @) g, sian Scale Mixtures (GSM) [17]. The results of LOD and GSM are

TheorentL is derived from the general model selection regult duoted from([6[.17], and those of NLmeans are produced with th
Barron, Birgé and Massart|[3], which shows that the projees- ~ code from Buades [4]. SSMS, with a much smaller computationa
timator over the best empirical set in an overcompleteatigtiy is ~ COMPplexity, generates the highest PSNRs in most casesaiftg
near optimal. Assuming linear approximation in a best agtimal ~ Barbara, rich in geometrical texture, is particularly sigant. An
basis, the structured sparse model selecfibn (7) is commaleu- €xample |IIu.strated in Fi@]3 shows that the SSMS denoisistpres
lating the linear projection energy in each basis, and enjog ad-
vantage of being free of the thresholding param@&teon contrast
to [3].

2
I

1The experimental results are available at
http://www.cmap.polytechnique.fyu/research/ASIFT/demo.html



[ o/pssR]|  Lena || Barbara || House [ Boat

52415 || 3735 | 3849 || 36.95 | 37.79 || 37.85 | 3865 || 35.15 | 36.97
‘ 38.60 | 38.62 || 38.08 | 38.73 || 39.37 | 39.51 || 37.22 | 37.09
34.86 | 35.61 || 34.28 | 34.03 || 35.39 | 35.35 || 32.65 | 33.58
10/28.13
35.47 | 35.63 || 34.42 | 35.11 || 35.98 | 36.13 || 33.64 | 33.70 ;
sorap.1q || SL47 | 3266 || 3010 | 3032 || 3245 | 32.39 || 29.25 | 30.38 Original
' 32.38 | 32.30 || 30.83 | 31.25 || 33.20 | 32.77 || 30.36 | 30.40 Fig. 4. Deblurring. From left to right: a cropped region from Bartmr

Table 1. Denoising performance (in PSNR). Top left: NLmeans [4]. Topblurred and noisy version, ForWaRD [16], the proposed SSkisiudring.
right: GSM [17]. Bottom left: learned overcomplete dictany [6]. Bottom  that of the degraded imageobtained through a linear operatdr
right: the proposed SSMS denoising. In each set the bedt iegu bold. and further contaminated by an additive noise
y[nj=Uf[n]+wln] for 1<n<N. (12)
The deblurring addressed in Section 4.1.2 is a classical$evprob-
lem, wherdJ is a convolution operator.
Given a dictionary? = {@n}mer that provides a sparse rep-

resentation for the original imagg (), the degraded imageis
- sparsely represented in the transformed dictiotary= {U @} mer:

- y=yr+wW with yr =3 almu ¢, (13)

Original Noisy 28.09 dB SSMS denosing 34.56 dB

meA
wherew’ =Uwu +wand|w||2 < ||y||%. The sparse super-resolution
version g = 10) , the proposed SSMS denoising. approach([l7, 11] seeks to estimate the coefficiarasd the support

4.1.2. Gaussian colored noise removal — deblurring A= {m:&m| # 0} of T from the degraded signg

. kg _ 5 ; 2
In these experiments, the clean imdgs blurred and contaminated a=arg nglnHy— Zra[m]u @nl|“+ A a1 (14)
by a Gaussian white noise ™S

Fig. 3. Denoising. From left to right: a cropped region from Lenajsyo

The resulting sparse super-resolution estimate ief

y[n] = (f«h)[n]+wln] for 1<n<N, (11) f=5 aman. (15)
wherey is the observed image ardis the blurring kernel that is N meA . )
assumed to be known. Deblurring aims at estimafifigm y. In addition to the sparse representation requiremen#othe

The deblurring can be casted to a denoising problem by firdP!lowing conditions, not addressed in [7_9 11], are necestar a
making a pseudo-inverse bfin the Fourier domain with a Wiener high-quality supe_r.-resolutlor21 estimatg13]:
filter, and then removing the Gaussian colored noise amplifie e Recoverability. ||U ¢n[*>0,vme A.
the Wiener filtering[[15]. e Stability. 2y = {U @n}mer should bancoherenenough.
The SSMS deblurring is compared with the popular ForwarpYVhile the first condition suggests tir_ecoverapil_ityof the support
algorithm [16]. The same Wiener filter is applied in both meth /\ fromy, the second condition implies tiséability of the support
ods. While the proposed SSMS deblurring proceeds the dagois €Stimate. It has recently been shown that imposing stre¢tuthe

with the SSMS model, ForwaRD denoises by translation-iawar ~€Stimation essentially stabilizes the estimaie [2, 15].
wavelet shrinkage. A Monte Carlo procedure is applied fahbo "€ SSMS model enjoys the advantage of being highly struc-

methods to estimate the Gaussian colored noise variancaan e tUred. Instead of solving (14), SMSMS calculates for eathe 2

coefficient. As summarized in Tallé 2, the SSMS deblurring im sk _ ok P k)12
proves on average about 0.7 dB in PSNR over ForWaRD. An ex- &= argrré}lnfak - ar_gn;m”y n;a[m]u%” +Alalh (16)
ample illustrated in Fig4 shows that the SSMS deblurrimaees 1 N€ best basis is Obta'lf(‘oeﬁ \g/;th in ek 17

more effectively the colored noise and better restores fateems. o gk:T.l..r?K ' (17)
Since the two methods apply the same Wiener filter, they aehie The sparse super-resolution|(14) and (15) is then calalnaite the
the same amount of deblurring, which will be further improwsy ~ best basisz*e.

the super-resolution deblurring described in Sedfior?4.2. 4.2.1. Super-resolution inpainting S
Inpainting aims at estimating fromy in (I2), wherel is a binary

” 9b/0n ” Lena H Cameram.|| House ” Boat ” random mask on the image ands typically neglected. The SSMS
1/5 |[[3318] 3395 2718 | 27.78 || 3235 | 3313 || 29.98 | 30.66 inpainting is calculated with patches of siz«®, M = 8 andK =
33.18 | 34.21 || 27.09 | 27.96 )| 32.31 | 33.65 ) 30.22 | 30.83 18. Thel! minimization is calculated via a weighted Lasso with
o5 |[3L17 | 3195 || 2451 | 2463 || 30.31 | 3087 || 27.84 | 28.22 the LARS algorithm[[1R]. Tablgl3 summarizes the SSMS infragnt
31.31 | 32.11 || 25.01 | 25.02 || 30.99 | 31.95 || 28.23 | 28.38 results, in comparison with the EMI[9] and the MCA [7] algbrits

Table 2. Deblurring performance (in PSNR). The left column specifies  that utilize a dictionary comprised of a curvelet frame arldcal

std of the Gaussian blur kernel, and of the Gaussian white noisg. Top  DCT, as well as with[[10] that utilizes a local DCT. The resuf

left: ForwaRD [16]. Top right: the proposed SSMS deblurri@d4.1P). MCA and EM are produced with the authors’ softwates [7,[90] [1

Bottom left: DSDI[11]. Bottom right: the proposed SSMS supsplution  is a degenerated case of SSMS consisting of only one basistha

deblurring (Se€4.2]2). In each set the best result is in bold the DCT. The SSMS inpainting generates the highest PSNR in a

4.2. Inverse Problems cases. When the masking percentage becomes important att69%

Image enhancement often requires to solve an inverse pnotleich  highly structured SSMS model significantly outperformssbeond

amounts to estimate an imagién a space of larger dimension than best algorithm by more than 2 dB in PSNR. As illustrated in[Big
the SSMS inpainting accurately restores the image georfretrya
very heavily masked image.



| maskearsnr|  Lena || Barbara || House || Boat |
40.32 | 33.40 || 38.56 | 32.46 || 41.95 | 33.57 || 37.33 | 31.34
30%/10.14
38.53 | 40.76 || 38.95 | 40.70 || 40.67 | 43.00 || 36.17 | 37.69
33.43 | 29.91 || 29.77 | 28552 || 34.10 | 29.56 || 30.40 | 27.58
60%/7.11
33.95 | 36.02 || 32.33 | 3450 || 35.23 | 37.41 || 31.00 | 32553
Table 3. Inpainting performance (in PSNR). Top left: [10]. Top right

EM [9]. Bottom left: MCA [7]. Bottom right: the proposed SSMfpaint-
ing. In each set the best result is in bold.

SSMS inpainting 36.63 dé
Fig. 5. Inpainting. From left to right: a cropped region from Len@0%
randomly masked version, the proposed SSMS inpainting.

Masked 6.30 dB

Original

4.2.2. Super-resolution deblurring

Super-resolution deblurring has the capacity to restowsgampat-
terns at frequencies eliminated by the convolution opetatevhich
is impossible with the Wiener filtering approach describe&eéc-
tion[4.1.2. The SSMS super-resolution deblurring is calad with
a hierarchy of two families of orthogonal bases.

5
The directional bases introduced in Section 3.3.1 do no¢ hav [

super-resolution deblurring ability since they do notdstthere-
coverability condition described above.
atoms, as illustrated in Figl 2, have Dirac supports in Fesuaind
can be therefore killed after the convolution. Following thier-
archical sparse decomposition scheme decoupling orientahd
position introduced in [19], a family of orthogonal baseattbpeci-
fies the edge position in the patch is cascaded with eachtidinat
basis of the corresponding orientation. The atoms in théipns
bases are localized around the underlying position, ansl liawe
spread spectrum in Fourier as required byrgmoverabilitycondi-
tion. The position bases are computed with the PCA proceidure
the same way as described in Secfion 3.3.1, for each badimthe
ing patches being extracted at a fixed position from the stictl
contour images. Two basis selectiohs](17) are cascadea ihith
erarchy: the first selects the best direction basis andnghe best
orientation, the second selects the best position basis. sparse
super-resolution deblurring is then calculated with thst Ipesition
basis in the selected direction.

The SSMS super-resolution deblurring is conducted withhpes
of size 12x 12,M = 20 andK = 18. Thel® minimization is calcu-
lated via a weighted Lasso with the LARS algorithm|[12]. Thaéoh
boundary issue is treated in the same way a5 ih [11]. Tdbl&2 su
marizes the performance of the SSMS super-resolution dhity
in comparison with ForwaRD, the SSMS deblurring (withouydesu
resolution), and the direct sparse deconvolution (DSD).lIhe
SSMS super-resolution deblurring generates the highdsRBSn
all cases, followed by the SSMS deblurring. As its gain witbpect
to the latter lies essentially on edges that take a smallqutigm in

the image, the PSNR improvement over the whole image is get si

nificant. However, the visual benefit is substantial. Assiltated in

1We thank very much Yifei Lou for kindly making the DSD expesints.

Indeed these oscillatory

Fig.[d, the super-resolution deblurring restores shardgeethan
the SSMS deblurring without super-resolution describéfIn2

Original Blurred, noisy 23.97 dB SSMS 26.08 dB SSMS SR 27.6@Bd

Fig. 6. Deblurring. From left to right: a cropped region from Camenan,
blurred and noisy version, the proposed SSMS deblurrinth@ui super-
resolution) and the proposed SSMS super-resolution debgur

To conclude, let us mention that we are currently extendirgy t
work to color image modeling and enhancement.
Acknowledgements: The authors would like to thank Michael Elad, and
Jean-Michel Morel for the inspiring discussions.
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